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Abstract

The relevance of small-punch tests and indentation (hardness) tests are compared with regard to the determination of a
constitutive law in the case of non active ferrite–bainite steel taken from a French power plant. Firstly, small-punch tests
were performed on material samples and the load deflection curves were compared with finite element calculations using
the FORGE2 Standard code. As a result the strength coefficient and the strain hardening exponent of Hollomon’s consti-
tutive law were determined by an inverse method (Simplex method). Besides, it was shown that a three-parameter consti-
tutive law such as Ludwik Hollomon’s leads to an indetermination since its parameters are correlated with each other.
Secondly indentation tests were performed with a ball indenter and the parameters of the constitutive law were determined
from the analysis of the load–indentation depth curves. Both methods give results in good agreement with the true stress–
true strain curve obtained by classical tensile testing, thus proving their applicability to nuclear materials.
� 2006 Elsevier B.V. All rights reserved.
1. Introduction

Because of the desire to increase the exploitation
lifetime of nuclear plants, the degradation of the
components’ mechanical properties requires careful
attention and monitoring over time. Unfortunately,
there is a natural decrease in the available samples
which were placed in situ earlier. Under these condi-
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tions, small-scale specimen techniques and non-
destructive tests become thus more and more
attractive in order to characterize the mechanical
properties and the in-service degradation of the
components.

Among these techniques, the small-punch test
and the indentation test allow information to be
obtained while using only a very small quantity of
material. Initially the small-punch test was devel-
oped to study irradiation effects [1]. This test was
used to evaluate the ductile to brittle transition tem-
perature (DBTT) [2,3], but also yield stress, ultimate
tensile stress [4,5], fracture toughness [6,7] and creep
behavior [8,9]. Among the indentation tests, the
instrumented tests, which enable to dissociate elastic
.
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behavior from plastic behavior, are the most useful
to obtain intrinsic characteristics other than the
resistance to penetration. For instance, the ABI
(automated ball indentation) method [10] can also
be used for the estimation of DBTT and fracture
toughness.

The aim of the present investigation is to com-
pare the relevance of indentation and small-punch
tests with regard to the determination of a tensile
constitutive law for a nuclear material.
Fig. 1. (a) Microstructure of the low alloyed steel A508 revealed
by a Stead le Chatelier solution and (b) the banded structure.
2. Experimental procedure

2.1. Materials

This study focuses on a low alloyed steel 15 Mn
Mo V (US denomination: A508) taken from a piece
of a steam vessel of the power plant located in
Montereau (France) after exposure for 145000 h
at a temperature of 613 K and a pressure of
130 bar. The microstructure of this alloy, which is
presented in Fig. 1, consists of banded ferrite and
bainite known as ghost lines resulting from the
segregation of the alloying elements and impurities.
The grain size is very heterogeneous particularly in
the case of the bainite phase.

For the different mechanical tests performed in
this investigation, the behavior of the material was
assessed in the three usual orientations L (long), T
(transverse), S (short-transverse) shown in Fig. 1.

2.2. Tensile tests

Tensile tests have been carried out on 4 mm
diameter and 10 mm gauge length specimens with
a hydraulic testing machine at a nominal strain rate
of 8.32 · 10�3 s�1. The strain hardening exponent n

and the strength coefficient k have been calculated
from the stress (r)–strain (e) curve according to
the guidelines of the ISO 10275 standard consider-
ing Hollomon’s constitutive law

r ¼ ken. ð1Þ
2.3. Small-punch tests

2.3.1. Sample preparation

Firstly, specimens have been machined from the
piece of vessel by Electro discharge machining to
obtain rough discs of 9 mm in diameter and
0.7 mm in thickness. Secondly, the two sides of these
discs have been polished with a 1200 paper grade up
to a final thickness of 0.5 mm ± 10 lm. Finally, the
samples have been electro-polished in a perchloric
and acetic acid solution. It is well known that using
small specimens for mechanical testing can induce a
scattering in the data due to a large size of micro
structural constituents relative to the size of the sam-
ple. However, in the present investigation, it must be
mentioned that the thickness of the overall samples
tested was larger than the diameter of 10 grains.

2.3.2. Mechanical testing

The small-punch tests have been carried out with
a low speed tensile test machine. The experimental
device includes the disc specimen, a 2.5 mm diame-
ter ball and a specimen holder. The specimen holder



Fig. 2. (a) Schematic representation of the small-punch test jig
and (b) of the FORGE2 configuration for simulation without
clamping.
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Fig. 3. (a) Examples of load versus displacement curves obtained
and (b) example of recorded indentation profile used to determine
the plastic indentation diameter.
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consists of an upper die and a lower die on which
the sample is placed and centered on a 4 mm diam-
eter hole (the round billet hole edge radius is null).
The first function is to clamp the sample with four
screws and to lead tanks with a 2.5 mm in diameter
hole. A schematic diagram of the test jig is shown in
Fig. 2(a).

In this study, small-punch tests have been per-
formed without lubrication at a crosshead speed
of 0.1 mm/min and recording simultaneously over
time the values of the load and the crosshead
displacement.

2.3.3. Finite element modeling

A small-punch test modeling has been developed
using the FORGE2 standard code software
(Fig. 2(b)). This software has been selected because
of an easy communication with the Inverse Method
program we developed for the treatment of the
experimental data. In the simulation, the upper
die, the lower die and the ball have been considered
as rigid bodies and the sample has been meshed with
1500 nodes. During the deformation, the upper and
lower dies have simply been fixed without applying
any force on them. The friction coefficient between
the sample and the tools, the Young modulus, the
Poisson ratio of the sample and the tools, and the
temperature have been fixed at values that equal
0.05, 210000 MPa, 0.3 and 293 K, respectively.

2.4. Hardness tests

Hardness measurements have been performed by
means of a Zwick Z2.5 universal test machine
equipped with hardness measurement head and ball
indenters with 1.25, 5 or 10 mm diameters (D). The
applied load (F) varies from 50 to 1500 N and the
curve load–indentation depth is recorded (Fig. 3(a)).

The plastic indentation diameter cannot immedi-
ately be derived from the indentation depth because
of the existence of material pile-up near the indenta-
tion print. Consequently the plastic indentation
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diameter has been determined from roughness mea-
surements performed with a contacting profilometer
KLA Tencor P10 (Fig. 3(b)).

On the one hand, the true plastic strain ep associ-
ated with the spherical indentation is calculated
with the Tabor [11] relation

ep ¼ 0:2
dp

D
; ð2Þ

where dp is the plastic indentation diameter.
On the other hand, the true stress rp is calculated

according to the ABI method [12]:

rp ¼
4F

pd2
pd

ð3Þ

with

d ¼
1:12 u 6 1;

1:12þ 0:53 ln u 1 6 u 6 27; u ¼ epEind

0:43rp
;

dmax ¼ 2:87 u P 27;

8><
>:

ð4Þ

where Eind is the elastic modulus of the indenter and
d is a parameter whose value depends on the stage
of development of the plastic zone beneath the
indenter [13].

The plastic strains and the plastic stresses for ball
indentations are used to plot the homogeneous plas-
tic flow portion of the tensile stress–strain curve
with the assumption of a power-law relationship
(Eq. (1)).
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Fig. 4. True stress–true strain tensile curves obtained for the different o
the piece of vessel) and the stress–strain correlations obtained by ball i
3. Results and discussion

3.1. Tensile tests

The true stress–true strain curves of the low
alloyed steel under study are presented in Fig. 4 for
the different orientations and for samples taken
either at the skin or in the core of the piece of vessel
(with stress strain correlations by ball indentation
with various indentation radii obtained in Section
3.3). In the homogeneous plastic deformation
domain, which is the domain of interest with regard
to the determination of the parameters of the consti-
tutive law of Hollomon, the figure shows that all the
curves are very similar meaning that there is no sig-
nificant influence on the results of the orientation
and the location of the samples relatively to the piece
of vessel. The values obtained are k = 1067 MPa and
n = 0.22.

3.2. Small punch tests

3.2.1. Mechanical behavior

The load–displacement curves obtained at room
temperature for the three orientations are shown
in Fig. 5. As for the tensile tests, it can be concluded
that there is no influence of the orientation on the
results since the curves are really similar. Moreover,
the shape of the curves is typical for this kind of test
[5]. Indeed, four stages of stress state can be noticed
on these curves. The first stage corresponds to the
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Fig. 5. Influence of the sample orientation on experimental small
punch test load–displacement curve (0.5 mm thickness samples
tested at room temperature).
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elastic bending and ranges from 0 to around
0.25 mm in displacement. During this stage, while
the entire sample undergoes an elastic deformation,
the ball-sample contact area, which is very small in
size, is deformed plastically. The second stage corre-
sponds to the plastic bending state and ranges from
0.25 to around 0.75 mm in displacement. During
this stage, the sample plasticized volume progres-
sively increases spreading from the ball-sample
contact area in the center of the sample through
the overall thickness and in radial direction. Usu-
ally, the transition between the second and the third
stage is marked by the existence of an inflection
point on the curve. In our case, this transition is
very slight and is around 0.75 mm in displacement.
Fig. 6. SEM micrographs: crack shape (a), and fracture surface (b
This third stage corresponds to the membrane
stretching and ranges from around 0.75 to 2 mm
in displacement. At this stage, the deformation of
the sample is not caused by a bending stress but
by a stretching stress around the contact area
between the ball and the sample. Finally, the fourth
stage located from the maximum load to the drop
load corresponding to the propagation of the main
crack, is the plastic instability area. After the
description of these four stages, it is important to
keep in mind that, in reality, there are no clear
boundary between the different stages from a phys-
ical point of view; one stress state simply becomes
predominant compared to another one. For
instance, the stretching deformation already exists
at the beginning of the test, but it becomes only pre-
dominant during the membrane stretching stage.

The micrograph in Fig. 6(a) shows a typical over-
view of a sample tested at room temperature. As
expected, the main fracture path is circular. In fact,
as described above, the main stressed area just
before the fracture is the area around the contact
surface between the ball and the sample. Conse-
quently, it is absolutely normal to find the fracture
at this particular place. The micrograph in
Fig. 6(b) is a high magnification of the fracture
surface of the sample which shows many micro-
voids typical of a ductile fracture.

Fig. 7 shows the influence of the thickness of the
samples on the results. As expected, it can be
noticed in Fig. 7(a) that the energy (which corre-
sponds to the surface under the load–displacement
curve) increases with the thickness of the sample.
) for 0.5 mm thickness samples tested at room temperature.



Fig. 7. (a) Influence of the thickness of the sample on the energy
value calculated from a small-punch test curve and (b) example of
fractured samples having a 0.6 mm thickness (left view) and
0.15 mm thickness (right view).
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Two micrographs of fractured samples having a 0.6
and 0.15 mm thickness respectively are presented in
Fig. 7(b). In the case of the thicker sample (left
view), the main fracture occurs as already described
for a sample of 0.5 mm thickness; i.e. in the circular
area around the contact surface between the ball
and the sample. On the contrary, the main fracture
is located at the center of the sample in the case of
the thinner sample (right view). This means that,
in comparison with the thicker fractured sample,
the stress distribution is different. Indeed, in the case
of a thick sample, the contact surface between the
ball and the sample increases during the test, which
causes an increase in both the load and the contact
pressure. Because of this pressure, there is rubbing
without sliding between the ball and the sample,
therefore the main stress at the center of the sample
is related to bending but not stretching which is pre-
vented by the rubbing. However if the thickness of
the sample is too small, then the contact pressure
between the sample and the ball is not sufficient to
prevent sliding and the propagation of membrane
stretching. This means that the center of the thinner
sample simultaneously undergoes a bending and
stretching stress explaining why the fracture occurs
in this area. The influence of different experimental
conditions such as clamping, ball diameter, sample
thickness, friction coefficient and rate of deforma-
tion were also studied by means of the finite element
method and compared with the experimental results
[14]. As was shown earlier [15,16] it must be empha-
sized that friction has a negligible influence on the
initial part of the loading, but for the last stage
the effect becomes more pronounced.

3.2.2. Analyses of the results by an inverse method

Whatever the inverse method under consider-
ation, a preliminary basic requirement is to define
a loss function that measures the accuracy of a
model with respect to the experimental data. In this
study, we have retained the sum of squared errors to
measure the accuracy between points of a load–
displacement curve obtained by finite element
modeling (FEM) and points of one of the experimen-
tal punch test load–displacement curves obtained
above. For the FEM, we have initially assumed that
the material under consideration obeys the two
parameters of Hollomon’s constitutive law (Eq. (1)).

The aim of the inverse method is to find the
parameters of the selected constitutive law that will
minimize the loss function. From all the numerous
traditional methods that can be used for the minimi-
zation, we have computed the simplex one [17,18]
that does not require a gradient estimation which
may lead to some numerical problems. From a tech-
nical point of view, the first stage of this method
consists in defining a square grid of parameters
and calculating the value of the loss function for
each point of this grid. The minimal value obtained
is retained to run our simplex algorithm
(k = 900 MPa, and n = 0.18, see Fig. 8). After opti-
mization, i.e. reduction size of the simplex, the fol-
lowing parameters k = 975 and n = 0.225 have
been found. These values tally with those estimated
from the experimental tensile curve with an error
lower than 10 % and 3% for k and n, respectively.
Such a good accuracy shows that both the selected
constitutive law and the selected mesh for the finite
element modeling were well adapted to simulate the
small-punch test and the numerical methods used in
the simulation were well posed.

While the Hollomon’s two-parameter law leads
to satisfying results in this investigation, it must be
mentioned that the Ludwik Hollomon’s three-
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parameter law is also often retained to model the
homogeneous plastic domain of a tensile curve

r ¼ Kð1þ aem
p Þ. ð5Þ

However, when considering this three-parameter
constitutive law to simulate our punch test by
FEM, the following results have been found after
simplex optimizations run from two different start-
ing points: (K = 167; a = 1.697; m = 0.45) for the
first starting point and (K = 151; a = 1.92;
m = 0.17) for the second while the loss function
error is near the null value in both cases. In other
words, there is not a unique optimal set of values
and the final solution depends on the simplex proce-
dure when considering the Ludwik Hollomon’s
three-parameter constitutive law. It is worth noting
that this poor robustness in estimation of the
parameters does not result from a non adapted con-
stitutive law relatively to the triaxial stress state of
the punch test while Ludwik Hollomon’s law nor-
mally refers to the uniaxial stress state of a tensile
test. In fact, this poor robustness in estimation re-
sults from underlying correlations existing between
the coefficients of the Ludwik Hollomon’s three-
parameter constitutive law that may lead to large
variability in their estimation irrespective of the
nature of the mechanical test. To illustrate this fact,
points corresponding to the homogeneous plastic
domain of a theoretical tensile curve (r, ep) have
been simulated using the following values K = 250;
a = 1.3 and m = 0.29. Then, a perturbation simulat-
ing a plausible experimental error has been intro-
duced by adding a Gaussian random noise with 0
as mean and 5 MPa as standard deviation of the va-
lue of the theoretical stress related to each point.
Such a procedure has been repeated 10000 times
to simulate 10000 perturbed theoretical tensile
curves. Examples of some of these simulated curves
are shown in Fig. 9.

For each curve, the coefficients (a,K,m) of Lud-
wik Hollomon’s law and the coefficients of the
simple Hollomon law (n,k) have been determined
and reported in Fig. 10. This figure clearly shows
firstly that all the coefficients are highly correlated.
Secondly, it can be seen that, if the variation range
is small (0.283–0.296) for the exponent n related to
Hollomon’s law, it is considerably larger for the
exponent m related to Ludwik Hollomon’s law
(0.19–0.42). Similar conclusions can be drawn about
the strength coefficients of these laws. Besides, in the
case of Ludwik Hollomon’s law, the product Ka is
found to be nearly constant for all the simulations
considered.

Moreover, it must be mentioned that even the
simple application of our simplex algorithm on the
initial theoretical tensile curve (r, ep) simulated by
FEM (i.e. without any perturbation simulating an
experimental error) leads to a large error on the esti-
mation of the value of exponent m. Indeed, the fol-
lowing solution was found: K = 262; a = 1.23 and
m = 0.22; values that are not really absurd from a
physical point of view but corresponding to an error
of 24% for the exponent m. Besides, the loss function
is near the null value meaning that the efficiency of
our simplex algorithm could not be questioned to
explain this result. As time increment, mesh and type
of element are identical to those used to simulate the
original curve; this variability observed on the esti-
mation of the parameters is only due to a second



Fig. 10. Correlations existing between the different parameters estimated by the SAS software for the 10000 perturbed theoretical curves:
(a)–(c) correspond to correlations between the three parameters related to Ludwik Hollomon’s law while (d) corresponds to the correlation
between the two parameters of Hollomon’s law.
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order numerical error. This physically simply means
that even a small perturbation really under the
experimental error could lead to high variations on
the estimation of the parameters of Ludwik Hollo-
mon’s constitutive law. Such limits illustrated from
the analysis of simulated tensile curves explain why
the Ludwik Hollomon’s three-parameter constitu-
tive law is not reliable to model the mechanical
behaviour of the material during the simulation of
a small-punch test. In fact, for the two simulations
of punch tests we already analysed by selecting two
different starting points for running the simplex opti-
misation, we found Ka = 167 · .697 = 283 in the
first case and 151 · 1.92 = 290 in the second case.
These quite similar values indicate that a real corre-
lation exists between these parameters. Different sets
of parameters (a,K,m) may correspond to different
curves which cannot be visually differentiated
(Fig. 9). Consequently, it is impossible to decorrelate
the coefficients of Ludwik Hollomon’s law from a
unique loading curve and using a simple identifica-
tion based on the small-punch test curves; a two-
parameter constitutive law like Hollomon’s law
should be preferred.

3.3. Hardness tests

Many attempts were made to correlate Vickers or
ball indentation with the tensile stress–strain curve.
However this subject is still open to discussion. In
this paper we used the ABI method described by
Haggag et al. [12], but we are aware that the equa-
tions are empirical. As reported earlier by Chaudhri
[13,19] both radial flow and plasticity theory for
rigid-plastic material are inconsistent with experi-
mental data and strain hardening distribution
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around indentation is not well established yet. This
method must therefore be used with precaution and
the results compared with those established by using
other methods.

The data (applied load–plastic indentation diam-
eter) obtained from ball hardness indentation are
used to plot the plastic stress–strain tensile relation-
ship for a power-law dependence hypotheses. Fig. 4
shows a good correlation between the data obtained
with the three different ball diameters (symbols) and
the tensile curves plotted for samples with different
orientations. From the ball indentation data a strain
hardening exponent and a yield strength respec-
tively near 0.22 and 450 MPa (k = 1145 MPa) are
obtained from the ABI stress–strain curve. These
results tally very well with those obtained by the
tensile test. These experiments could be performed
for post-irradiation characterization studies (as for
the punch test) but also in situ, in active environ-
ment.

Furthermore, the hardness test seems the most
convenient one for studying irradiated materials
for which hardening differs from inactive material.
It was shown [20] that irradiation effects on the
stress strain curve may be associated with a complex
mode of deformation at the mesoscale where the
composite material is composed of strain softening
shear bands that are embedded in a strain hardening
matrix. Both types of behaviour may be separately
assessed by local indentation (on the opposite punch
test and stress–strain curve give only the global
response). Other information can also be provided
by the observation of the pile-up geometry near
the indentation print that is related to residual stress
and strain hardening [21–23]. A criticism we would
raise concerns the difficulty in observing such geom-
etry in active environment, but pile-up height can be
calculated from the variation of hardness with the
reciprocal depth of the indentation print [24] with
the assumption that the piled-up region also
supports the indenter’s load and that the normal
pressure is distributed uniformly over the projected
area of the indentation [25].

4. Conclusions

The use of small-scale specimens associated with
an inverse methodology for determining the
mechanical properties of irradiated materials is
actually an approach of major interest for two main
reasons: it reduces as much as possible the irradia-
tion undergone by the staff and it entails a less
destructive test. However, the ability of inverse
methods to evaluate the mechanical properties of
materials is often subjected to caution and the
results obtained for a given material must be com-
pared with conventional experiments.

In this study we used the small-punch test and the
ball hardness test to estimate the uniaxial yield
stress and the hardening exponent of 15 Mn Mo V
steel with a banded ferrite–bainite structure pro-
vided from a steam vessel of the power plant of
Montereau. Both methods give a very good correla-
tion with the results obtained with the conventional
tensile test provided a two-parameter constitutive
law is used. Conversely we show that a three-param-
eter law such as Ludwik Hollomon’s gives inconsis-
tent results since its three parameters are correlated
with each other. The hardness method, after valida-
tion for the non active material under study by com-
parison with the tensile test, is the least destructive
to determine in situ the constitutive law of irradi-
ated materials and would be the one of choice for
assessing degrading properties in nuclear environ-
ment while sacrificing as little as material as possible
for trial test.
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(1986) 1.
[18] W. Spendley, G.R. Hext, F.R. Himsworth, Technometrics 4
(1962) 441.

[19] M. Chaudhri, Philos. Mag. A 74 (1996) 1213.
[20] G.R. Odette, M.Y. He, E.G. Donahue, P. Spätig, T.

Yamamoto, J. Nucl. Mater. 307–311 (2002) 171.
[21] C. Santos, G.R. Odette, G.E. Lucas, T. Yamamoto, J. Nucl.

Mater. 258–263 (1998) 452.
[22] A. Iost, R. Bigot, L. Bourdeau, Matériaux Techniques 12

(1995) 69.
[23] A. Iost, J.B. Vogt, Scripta Mater. 37 (1997) 1499.
[24] A. Iost, R. Bigot, J. Mater. Sci. 31 (1996) 3573.
[25] M. Chaudhri, M. Winter, J. Phys. D: Appl. Phys. 21 (1988)

370.


	Assessment of the constitutive law by inverse  methodology: Small punch test and hardness
	Introduction
	Experimental procedure
	Materials
	Tensile tests
	Small-punch tests
	Sample preparation
	Mechanical testing
	Finite element modeling

	Hardness tests

	Results and discussion
	Tensile tests
	Small punch tests
	Mechanical behavior
	Analyses of the results by an inverse method

	Hardness tests

	Conclusions
	Acknowledgements
	References


